Ingénierie microstructurelle des surfaces : applications aux matériaux nanocristallins pour l’aéronautique et le spatial
Pour la première fois dans Traitements & Matériaux nous publions un article en anglais, rédigé par Integran, société canadienne qui avait reçu le Prix de l’innovation à l’occasion des journées Surfair de 2010. Un résumé en français vous est proposé en préambule.
© Safran _ T-45 Goshawk
Figure 1: Electron micrographs of (a) a coarse-grained metal [1] and (b) Nanovate nanocrystalline material (left) and magnified x100,000 (right). A single grain of the nanocrystalline metal is outlined.
Figure 2: Taber Wear Index of electrodeposited Ni as
a function of average grain size [12].
Figure 3: Optical micrographs of cross-sections of (a) Nanovate CR and (b) EHC electrodeposits. Coatings appear in the left side of the figures.
Figure 4: ASTM B537 ranking as a function of exposure time for Nanovate CR and EHC.
Figure 5: S-N curves for bare, Nanovate CR- and EHC-coated (a) 4340 steel (1790 – 1930 MPa UTS) with rotating beam test configuration, and (b) 4340 steel (1240-1380 MPa UTS).
Figure 6: Schematic of Integran’s CFRP tooling approach, depicting a CFRP tool section coated with Nanovate NV.
Figure 7: CTE of Nanovate NV compared to CFRP and tool materials [39].
Figure 8: Hardness of Nanovate NV compared to conventional low CTE metals and CFRP.
Figure 9: Scanning electron micrographs of cross-sections the coated CFRP after thermal cycling.
Figure 10: Schematic of the process to create Nanovate NP nanocrystalline metal-polymer hybrid components.
Figure 11: Performance benefits of Nanovate NP hybrid components compared to polymer (plastic) alone, including (a) tensile strength, (b) flexural modulus and (c) impact resistance [36].
Figure 12: Stiffness storage modulus at elevated temperature of Nanovate NP hybrid components compared to polymer
(plastic) alone.
Figure 13: Images of (a) CFRP and (b) Nanovate NS-coated CFRP following erosion tests.
Table 1: Typical hardness achieved with Integran’s Nanovate nanocrystalline materials.
Table 2: Comparison of Nanovate CR and EHC Processes.
Table 3: Comparison of Nanovate CR and EHC Properties.
Table 4: Summary of the properties of Nanovate NV-coated CFRP, CFRP and Invar [37,38,39].