Carbonitruration profonde surenrichie à l’azote : contrôle et régulation
L’importance du four, des équipements et des charges traitées sur la maîtrise et le contrôle de l’atmosphère est démontrée par Process Electronic et Métallo Corner pour garantir un enrichissement uniforme en carbone et en azote.
©Process Electronic
figure 1 : Main reactions associated with a carbonitriding process.
figure 2 : Percentage of residual ammonia in thermal equilibrium at different furnace pressures.
figure 3 : Schema of a horizontal (left) and a vertical (right) retort furnace.
figure 4 : Schema of a horizontal (left) and a vertical (right) retort furnace.
figure 5 : Schema of two Batch/IQ furnace designs, flow through (left) and reversing (right).
figure 6 : Schema of the hot chamber of a Batch/IQ furnace.
figure 7 : Cut-outs in the dome of Batch/IQ furnaces.
figure 8 : Gas distribution and velocity in a Batch/IQ hot chamber [15]. The highest velocity is marked red and reduces via yellow, green, light blue towards dark blue.
figure 9 : C-profile (orange) and N-profile (green) in a steel bar made from 20 MnCr 5 aiming for a case depth of 1 mm, a surface carbon content of 0.70 %C and a surface nitrogen content of 0.30 %N. The blue line indicates the resulting hardness. Simulation does n
figure 10 : C-profile (orange) and N-profile (green) in a steel bar made from 20 MnCr 5 aiming for a case depth of 1 mm, a surface carbon content of 0.70 %C and a surface nitrogen content of 0.30 %N. In the beginning of the process (left), both potentials are at bo